2026 Consistency ResearchFebruary 2026

AI Hotel Rankings Are Not Random

Key Finding: SparkToro's research found AI brand recommendations are essentially random β€” less than 1% produce identical lists. We replicated their methodology for hotels using 4,000 Google AI Mode queries and found the opposite: 50.5% position 1 stability, 33.5% position 2 stability, and 24.2% position 3 stability. In concentrated markets like Berlin family hotels, the same hotel ranks #1 in 96% of queries. Hotels are fundamentally different from generic brand queries because they're constrained by geography (Paris hotels can only be in Paris), query type (luxury vs. boutique), and finite supply (82 hotels in Bordeaux vs. thousands of CRM tools globally).

4,000
Queries
6,249
Hotel Mentions
8
Cities
50.5%
Avg #1 Stability

SparkToro vs Hotelrank: Methodology Comparison

We replicated SparkToro's methodology but applied it to a vertical-specific domain (hotels) to test whether geographic and supply constraints change AI consistency patterns.

DimensionSparkToro (2026)Hotelrank (2026)
Query TypeGeneral brand queries ("best CRM", "project management tools")Hotel queries ("best luxury hotels Paris", "boutique hotels Vienna")
Sample SizeMultiple queries across brands4,000 queries, 6,249 hotel mentions
AI SystemChatGPT, Claude, PerplexityGoogle AI Mode
Geographic ScopeGlobal (no location constraint)8 cities (location-locked queries)
Supply UniverseInfinite (thousands of global brands)Finite (~50-1000 hotels per city)
Key MetricIdentical list ratePosition stability + top 3 overlap
Finding<1% consistency50.5% position 1 stability (range: 17-96%)

The hypothesis: SparkToro's finding is correct for open-ended brand queries β€” but hotels are structurally different. Geographic constraints + finite supply = predictable hierarchies. Our data proves it: 20-50x higher consistency than general brands.

How We Structured Our Queries

Each query followed the pattern: "best [tier] hotels [city]". We ran 100 identical queries per cityΓ—tier combination across 4 proxy locations (US, DE, FR, ES).

TierExample QueriesDefinition / Intent
Luxury / 5-star
"best luxury hotels Paris""best 5-star hotels Vienna"
High-end properties, typically 5-star rated. Focuses on amenities, service, prestige brands.
Boutique / Design
"best boutique hotels Berlin""best design hotels London"
Smaller, character-driven properties. Emphasizes unique design, local experience, personality.
Budget / Value
"best budget hotels Barcelona""best cheap hotels Lisbon"
Price-focused travelers. Good value properties, hostels, 2-3 star hotels.
Family
"best family hotels New York""best hotels for families Bordeaux"
Family travelers with children. Larger rooms, kid-friendly amenities, connecting rooms.
Romantic / Couples
"best romantic hotels Paris""best hotels for couples Vienna"
Couples, honeymoons, anniversaries. Intimate settings, spa facilities, romantic ambiance.
Why tiering matters: Different tiers show dramatically different consistency levels. Budget hotels in Vienna show 91% stability (few options), while boutique hotels in London show only 23% (fragmented market with many small players). The tier constrains the pool size, which directly impacts ranking predictability.

1. SparkToro vs Hotels: The Numbers

In January 2026, SparkToro published research showing AI brand recommendations are highly inconsistent. We replicated their methodology for hotel queries to test whether the same pattern holds.

SparkToro Finding

<1%

Chance of getting identical brand lists twice. For queries like "best CRM" or "project management tools," AI produces essentially random results.

Their conclusion: "Marketers should take care when tracking AI visibility" β€” rankings are too unstable to measure meaningfully.

Our Hotel Finding

50.5%

Average position 1 stability. The same hotel appears first in over half of identical query runs. Range: 17% to 96%.

Our conclusion: Hotel rankings ARE measurable. Geographic and query constraints create stable, predictable hierarchies.

Consistency Comparison: Brands vs Hotels (All Positions)

Source: Hotelrank AI Consistency Study, Feb 2026

Key insight: Hotels show 50x higher consistency than general brands. This isn't a flaw in SparkToro's methodology β€” it's a fundamental difference in how constrained vs. open-ended queries behave in AI systems. Hotels have a finite, geographically-locked supply; brands have infinite global options.

2. Stability Across All Positions

Position 1 gets the most attention, but positions 2 and 3 also show meaningful stability β€” far above SparkToro's brand findings.

50.5%
Position 1 Stability

Same hotel ranks #1 in half of all identical query runs (range: 17-96%)

33.5%
Position 2 Stability

Same hotel ranks #2 in a third of runs β€” still 33x higher than SparkToro's <1%

24.2%
Position 3 Stability

Same hotel ranks #3 in a quarter of runs β€” meaningful predictability continues

Most Stable Markets (Position 1)

Source: Hotelrank AI Consistency Study, Feb 2026

Least Stable Markets (More Competition)

CityTierTop HotelStability
LondonBudgetPremier Inn London County Hall17.0%
BerlinBoutiqueHotel Telegraphenamt22.6%
ParisBoutiqueRelais Christine22.8%
LisbonRomanticThe Ivens23.4%
ParisBudgetHΓ΄tel du Champ de Mars24.3%

Pattern: Smaller markets (Bordeaux, Vienna) show higher stability across all positions. Large, competitive markets (London, Paris boutique) show more variation β€” but even position 3 in the least stable market (24%) is 24x more predictable than SparkToro's brand queries. The hierarchy is real at every level.

3. Top 3 Overlap Analysis

Beyond individual positions, we measured how many of the top 3 hotels overlap between any two query runs. An overlap of 3.0 means identical top 3 every time; 0.0 means completely different lists.

1.06
Avg Overlap (of 3)
2.12
Best: Berlin Family
0.40
Worst: London Romantic
94.3%
Berlin: 2+ hotels match

Highest Top 3 Overlap by Market

Source: Hotelrank AI Consistency Study, Feb 2026

What the numbers mean

  • 2.12 overlap (Berlin Family): On average, 2 out of 3 top hotels are the same between any two query runs
  • 94.3% share 2+ hotels: In Berlin family queries, 94% of run pairs have at least 2 hotels in common
  • 18.1% share all 3: Nearly 1 in 5 runs produce the exact same top 3 list
Markets with highest top 3 consistency
MarketAvg Overlap2+ MatchAll 3 Match
Berlin (Family)2.1294.3%18.1%
Bordeaux (Boutique)1.9789.6%12.9%
Bordeaux (Luxury)1.8470.3%22.7%
Bordeaux (Budget)1.8176.2%14.8%
Vienna (Family)1.7667.3%8.8%

Lowest Top 3 Overlap (Most Competitive Markets)

MarketAvg Overlap2+ MatchAll 3 Match
London (Romantic)0.407%0%
Paris (Boutique)0.448.3%0.3%
London (Boutique)0.474.8%0.2%
Lisbon (Romantic)0.478.6%1.5%
Berlin (Boutique)0.5510.8%0.7%

What this means: In Berlin's family hotel segment, 94% of query runs share at least 2 of the same top 3 hotels. In contrast, London's romantic segment shows only 7% overlap β€” each query surfaces a different set. The data confirms: AI visibility is highly measurable in concentrated markets, and still meaningful (though more volatile) in fragmented ones.

4. Dominant Hotels by Position

Some hotels have locked in the #1 position across hundreds of queries. These aren't random β€” they represent genuine AI visibility leaders. Contact these hotels β€” they'd want to know.

Hotels with strongest position lock-in by query type
HotelCityQuery TypeMentionsAvg Position#1 RateTop 3 Rate
Hotel AustriaViennaBudget541.0498.1%100%
Hotel Adlon KempinskiBerlinFamily991.0993.9%99%
InterContinental Le GrandBordeauxLuxury461.1191.3%100%
Hotel Sacher WienViennaLuxury891.2678.7%100%
Claridge'sLondonLuxury691.3382.6%95.7%
Villas FochBordeauxBoutique1431.3372%98.6%
πŸ₯‡

Hotel Austria (Vienna)

Appears #1 in 98.1% of relevant queries. The most locked-in hotel in our dataset.

Budget tier, 54 mentions, avg position 1.04
πŸ₯ˆ

Hotel Adlon Kempinski (Berlin)

93.9% position 1 rate across 99 mentions. Dominates family hotel queries.

Family tier, 99 mentions, avg position 1.09
πŸ₯‰

InterContinental Le Grand (Bordeaux)

91.3% position 1 rate. Dominates luxury queries in a smaller market.

Luxury tier, 46 mentions, avg position 1.11

The hierarchy is real: These hotels don't randomly appear first β€” they consistently outrank competitors. AI visibility is measurable, and some hotels have effectively "locked in" the top position in their market. This is the "Position 0" of AI search.

5. Why Hotels Are Different From Brands

Three structural factors explain why hotel recommendations show 50x more consistency than SparkToro's brand findings β€” backed by our market concentration data.

Location Constraint

A "Paris hotel" query can only return Paris hotels. Unlike "best CRM" which draws from a global, infinite pool, hotels are locked to a specific geography.

Data point: 100% of Paris hotel responses contain Paris hotels. 0% of "best CRM" responses are location-locked.

Query Type Constraint

"Luxury hotels Vienna" further narrows the set. Each query tier (boutique, budget, family) creates a smaller, more stable consideration set.

Data point: Adding tier constraint increases position 1 stability from ~40% (generic) to 60-96% (tier-specific).

Finite Supply

Bordeaux has 82 hotels in AI consideration. London has ~226. Compare to thousands of CRM vendors globally. Smaller universes create more predictable rankings.

Data point: Bordeaux (82 hotels) = 82-90% stability. London (226 hotels) = 17-23% stability.

Concentration Predicts Consistency

Our Google AI Mode Hotel Study measured market concentration using the Herfindahl-Hirschman Index (HHI). The correlation is clear:

High HHI = High Stability

Bordeaux HHI: 1,169 β†’ 82-90% position stability

Low HHI = Lower Stability

London HHI: 175 β†’ 17-23% position stability

View full concentration analysis

The implication: Hotel AI visibility isn't random β€” it's predictable based on market structure. Know your market's concentration, and you can predict how stable your rankings will be. Concentrated markets reward consistent optimization; fragmented markets require appearing in multiple top positions.

Frequently Asked Questions

No. SparkToro found <1% consistency for general brand queries, but hotels show 50.5% position 1 stability on average. The difference is structural: hotels are geographically constrained, while brands draw from an infinite global pool. Some hotel markets show 96% stability.
This study measured Google AI Mode specifically, finding 50.5% position 1 stability. Our separate ChatGPT studies show similar patterns β€” hotel recommendations are far more consistent than general brand queries due to geographic constraints. See our Yelp ChatGPT study and Anatomy of ChatGPT Hotel Search for ChatGPT-specific data.
Smaller, concentrated markets show highest stability: Berlin family hotels (96%), Vienna budget (91%), Bordeaux boutique (90%). These markets have fewer competitors and clearer hierarchy. Large, fragmented markets like London boutique (23%) show more variation but are still 23x more predictable than brand queries.
Smaller, concentrated markets show highest stability: Berlin family hotels (96%), Vienna budget (91%), Bordeaux boutique (90%). These markets have fewer competitors and clearer hierarchy. Large, fragmented markets like London boutique (23%) show more variation but are still 23x more predictable than brand queries.
Yes. Hotels with strong fundamentals β€” optimized Google Business Profile, consistent positive reviews, authoritative brand presence across multiple sources β€” tend to lock in top positions. Our dominant hotels analysis shows some properties maintain #1 rankings in 98% of queries. The stability means optimization efforts compound over time.
Yes. Hotels with strong fundamentals β€” optimized Google Business Profile, consistent positive reviews, authoritative brand presence across multiple sources β€” tend to lock in top positions. Our dominant hotels analysis shows some properties maintain #1 rankings in 98% of queries. The stability means optimization efforts compound over time.
It depends on market concentration. In stable markets (Bordeaux, Vienna), top positions rarely change β€” the same hotel appears #1 in 80-96% of queries. In competitive markets (London, Paris), positions shuffle more frequently but the top 3-5 hotels remain consistent. Major shifts typically follow model updates or significant changes in review signals.
It depends on market concentration. In stable markets (Bordeaux, Vienna), top positions rarely change β€” the same hotel appears #1 in 80-96% of queries. In competitive markets (London, Paris), positions shuffle more frequently but the top 3-5 hotels remain consistent. Major shifts typically follow model updates or significant changes in review signals.
Not necessarily. Our data shows independent hotels like Hotel Austria (Vienna) and Villas Foch (Bordeaux) achieving 90%+ position 1 stability. What matters more than chain size is: (1) strong local presence in the specific market, (2) consistent review signals, and (3) clear category positioning. Boutique and independent hotels can and do dominate their segments.
Not necessarily. Our data shows independent hotels like Hotel Austria (Vienna) and Villas Foch (Bordeaux) achieving 90%+ position 1 stability. What matters more than chain size is: (1) strong local presence in the specific market, (2) consistent review signals, and (3) clear category positioning. Boutique and independent hotels can and do dominate their segments.
Three factors: (1) Location constraint β€” a Paris query only returns Paris hotels, (2) Query type constraint β€” 'luxury' or 'boutique' further narrows options, (3) Finite supply β€” Bordeaux has 82 hotels vs thousands of CRM tools globally. These constraints create stable hierarchies.
Three factors: (1) Location constraint β€” a Paris query only returns Paris hotels, (2) Query type constraint β€” 'luxury' or 'boutique' further narrows options, (3) Finite supply β€” Bordeaux has 82 hotels vs thousands of CRM tools globally. These constraints create stable hierarchies.
High-concentration markets (measured by HHI in our Google AI Mode study) correlate with high consistency. Bordeaux has HHI 1,169 and 82-90% stability. London has HHI 175 and 17-23% stability. Market structure predicts ranking predictability.
High-concentration markets (measured by HHI in our Google AI Mode study) correlate with high consistency. Bordeaux has HHI 1,169 and 82-90% stability. London has HHI 175 and 17-23% stability. Market structure predicts ranking predictability.
Position 2 shows 33.5% average stability (same hotel appears in position 2 in a third of runs). Position 3 shows 24.2% stability. While lower than position 1, these are still 33x and 24x higher than SparkToro's <1% for brands. The hierarchy is real at every level.
Position 2 shows 33.5% average stability (same hotel appears in position 2 in a third of runs). Position 3 shows 24.2% stability. While lower than position 1, these are still 33x and 24x higher than SparkToro's <1% for brands. The hierarchy is real at every level.
Focus on your specific market segment. If you're in a concentrated market (smaller city, specific tier), maintaining your position matters β€” competitors can't easily displace you. In fragmented markets, aim to be consistently in the top 3-5 rather than locked at #1. Both are achievable and measurable.
Focus on your specific market segment. If you're in a concentrated market (smaller city, specific tier), maintaining your position matters β€” competitors can't easily displace you. In fragmented markets, aim to be consistently in the top 3-5 rather than locked at #1. Both are achievable and measurable.

Understand Your Hotel's AI Visibility

Get a personalized analysis of your hotel's ranking stability, competitive position, and optimization opportunities across AI search.